Genetic dissection of pancreatic trypsin inhibitor.

نویسندگان

  • D P Goldenberg
  • J M Berger
  • D A Laheru
  • S Wooden
  • J X Zhang
چکیده

In a previous study, a genetic screening procedure was used to identify variants of bovine pancreatic trypsin inhibitor that can fold to an active conformation but that are inactivated much more rapidly than the wild-type protein in the presence of dithiothreitol (DTT). The mechanisms by which 30 of these DTT-sensitive variants are inactivated have now been investigated. Some of the amino acid replacements cause rapid inactivation in the presence of DTT because the three disulfides of the native protein are reduced up to 300-fold faster than for the wild-type protein, leading to complete unfolding. Other substitutions, however, do not greatly increase the rate of complete reduction and unfolding but lead to accumulation of an inactive two-disulfide species. There is a striking correlation between the locations of the DTT-sensitive amino acid replacements in the three-dimensional structure of the protein and the mechanisms by which the variants are inactivated. All of the substitutions that cause rapid unfolding are clustered at one end of the folded protein, in the vicinity of the two disulfides that are reduced most slowly during unfolding of the wild-type protein, while substitutions of the other class are all located at the other end of the protein, near the trypsin binding site. These results indicate that the kinetic stability of native bovine pancreatic trypsin inhibitor and its ability to function as a protease inhibitor are largely influenced by residues in two distinguishable regions of the folded protein.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

From acute to chronic pancreatitis: the role of mutations in the pancreatic secretory trypsin inhibitor gene.

Pancreatic secretory trypsin inhibitor (PSTI) is a potent natural inhibitor of trypsin. We proposed the hypothesis that, if the function of the PSTI is impaired by its genetic mutation, trypsin may easily promote autodigestion causing pancreatitis and we performed a mutational analysis of the PSTI gene in patients with pancreatitis. Two exonic mutations (N34S and R67C) were thought to be associ...

متن کامل

Pancreatic secretory trypsin inhibitor stimulates the growth of rat pancreatic carcinoma cells.

Pancreatic secretory trypsin inhibitor was examined for growth-promoting activity on five cell lines using standard cell culture techniques. One cell line, AR4-2J, derived from a rat pancreatic acinar cell carcinoma, responded with significantly increased incorporation of [3H]thymidine and colony formation. Pancreatic secretory trypsin inhibitor stimulated the incorporation of [3H]thymidine in ...

متن کامل

Transgenic expression of pancreatic secretory trypsin inhibitor-1 rescues SPINK3-deficient mice and restores a normal pancreatic phenotype.

Endogenous trypsin inhibitors are synthesized, stored, and secreted by pancreatic acinar cells. It is believed that they play a protective role in the pancreas by inhibiting trypsin within the cell should trypsinogen become prematurely activated. Rodent trypsin inhibitors are highly homologous to human serine protease inhibitor Kazal-type 1 (SPINK1). The mouse has one pancreatic trypsin inhibit...

متن کامل

Genetic background of pancreatitis.

Trypsin activity is properly suppressed by pancreatic secretory trypsin inhibitor (PSTI), which is also known as serine protease inhibitor Kazal type 1 (SPINK1), thereby preventing damage to pancreatic acinar cells as a first line of defence. However, if trypsin activation exceeds the capacity of PSTI/SPINK1, a subsequent cascade of events leads to the activation of various proteases that damag...

متن کامل

Application of proteomic technology in identifying pancreatic secretory trypsin inhibitor variants in urine of patients with pancreatitis.

BACKGROUND Although the analysis of genetic variability has traditionally been performed with molecular genetic techniques, the development of proteomic technology has raised the possibility of analyzing genetic variants at the protein level. This method provides additional information about posttranslational modifications and differences in expression. We used mass spectrometry to characterize...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 89 11  شماره 

صفحات  -

تاریخ انتشار 1992